3.452 \(\int \frac{(1-a^2 x^2)^{3/2} \tanh ^{-1}(a x)}{x} \, dx\)

Optimal. Leaf size=144 \[ \text{PolyLog}\left (2,-\frac{\sqrt{1-a x}}{\sqrt{a x+1}}\right )-\text{PolyLog}\left (2,\frac{\sqrt{1-a x}}{\sqrt{a x+1}}\right )-\frac{1}{6} a x \sqrt{1-a^2 x^2}+\frac{1}{3} \left (1-a^2 x^2\right )^{3/2} \tanh ^{-1}(a x)+\sqrt{1-a^2 x^2} \tanh ^{-1}(a x)-\frac{7}{6} \sin ^{-1}(a x)-2 \tanh ^{-1}(a x) \tanh ^{-1}\left (\frac{\sqrt{1-a x}}{\sqrt{a x+1}}\right ) \]

[Out]

-(a*x*Sqrt[1 - a^2*x^2])/6 - (7*ArcSin[a*x])/6 + Sqrt[1 - a^2*x^2]*ArcTanh[a*x] + ((1 - a^2*x^2)^(3/2)*ArcTanh
[a*x])/3 - 2*ArcTanh[a*x]*ArcTanh[Sqrt[1 - a*x]/Sqrt[1 + a*x]] + PolyLog[2, -(Sqrt[1 - a*x]/Sqrt[1 + a*x])] -
PolyLog[2, Sqrt[1 - a*x]/Sqrt[1 + a*x]]

________________________________________________________________________________________

Rubi [A]  time = 0.23155, antiderivative size = 144, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.273, Rules used = {6014, 6010, 6018, 216, 5994, 195} \[ \text{PolyLog}\left (2,-\frac{\sqrt{1-a x}}{\sqrt{a x+1}}\right )-\text{PolyLog}\left (2,\frac{\sqrt{1-a x}}{\sqrt{a x+1}}\right )-\frac{1}{6} a x \sqrt{1-a^2 x^2}+\frac{1}{3} \left (1-a^2 x^2\right )^{3/2} \tanh ^{-1}(a x)+\sqrt{1-a^2 x^2} \tanh ^{-1}(a x)-\frac{7}{6} \sin ^{-1}(a x)-2 \tanh ^{-1}(a x) \tanh ^{-1}\left (\frac{\sqrt{1-a x}}{\sqrt{a x+1}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[((1 - a^2*x^2)^(3/2)*ArcTanh[a*x])/x,x]

[Out]

-(a*x*Sqrt[1 - a^2*x^2])/6 - (7*ArcSin[a*x])/6 + Sqrt[1 - a^2*x^2]*ArcTanh[a*x] + ((1 - a^2*x^2)^(3/2)*ArcTanh
[a*x])/3 - 2*ArcTanh[a*x]*ArcTanh[Sqrt[1 - a*x]/Sqrt[1 + a*x]] + PolyLog[2, -(Sqrt[1 - a*x]/Sqrt[1 + a*x])] -
PolyLog[2, Sqrt[1 - a*x]/Sqrt[1 + a*x]]

Rule 6014

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Dist
[d, Int[(f*x)^m*(d + e*x^2)^(q - 1)*(a + b*ArcTanh[c*x])^p, x], x] - Dist[(c^2*d)/f^2, Int[(f*x)^(m + 2)*(d +
e*x^2)^(q - 1)*(a + b*ArcTanh[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[q
, 0] && IGtQ[p, 0] && (RationalQ[m] || (EqQ[p, 1] && IntegerQ[q]))

Rule 6010

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[((f*x)^
(m + 1)*Sqrt[d + e*x^2]*(a + b*ArcTanh[c*x]))/(f*(m + 2)), x] + (Dist[d/(m + 2), Int[((f*x)^m*(a + b*ArcTanh[c
*x]))/Sqrt[d + e*x^2], x], x] - Dist[(b*c*d)/(f*(m + 2)), Int[(f*x)^(m + 1)/Sqrt[d + e*x^2], x], x]) /; FreeQ[
{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && NeQ[m, -2]

Rule 6018

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))/((x_)*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[(-2*(a + b*ArcTanh
[c*x])*ArcTanh[Sqrt[1 - c*x]/Sqrt[1 + c*x]])/Sqrt[d], x] + (Simp[(b*PolyLog[2, -(Sqrt[1 - c*x]/Sqrt[1 + c*x])]
)/Sqrt[d], x] - Simp[(b*PolyLog[2, Sqrt[1 - c*x]/Sqrt[1 + c*x]])/Sqrt[d], x]) /; FreeQ[{a, b, c, d, e}, x] &&
EqQ[c^2*d + e, 0] && GtQ[d, 0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 5994

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[((d + e*x^2)
^(q + 1)*(a + b*ArcTanh[c*x])^p)/(2*e*(q + 1)), x] + Dist[(b*p)/(2*c*(q + 1)), Int[(d + e*x^2)^q*(a + b*ArcTan
h[c*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] && NeQ[q, -1]

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rubi steps

\begin{align*} \int \frac{\left (1-a^2 x^2\right )^{3/2} \tanh ^{-1}(a x)}{x} \, dx &=-\left (a^2 \int x \sqrt{1-a^2 x^2} \tanh ^{-1}(a x) \, dx\right )+\int \frac{\sqrt{1-a^2 x^2} \tanh ^{-1}(a x)}{x} \, dx\\ &=\sqrt{1-a^2 x^2} \tanh ^{-1}(a x)+\frac{1}{3} \left (1-a^2 x^2\right )^{3/2} \tanh ^{-1}(a x)-\frac{1}{3} a \int \sqrt{1-a^2 x^2} \, dx-a \int \frac{1}{\sqrt{1-a^2 x^2}} \, dx+\int \frac{\tanh ^{-1}(a x)}{x \sqrt{1-a^2 x^2}} \, dx\\ &=-\frac{1}{6} a x \sqrt{1-a^2 x^2}-\sin ^{-1}(a x)+\sqrt{1-a^2 x^2} \tanh ^{-1}(a x)+\frac{1}{3} \left (1-a^2 x^2\right )^{3/2} \tanh ^{-1}(a x)-2 \tanh ^{-1}(a x) \tanh ^{-1}\left (\frac{\sqrt{1-a x}}{\sqrt{1+a x}}\right )+\text{Li}_2\left (-\frac{\sqrt{1-a x}}{\sqrt{1+a x}}\right )-\text{Li}_2\left (\frac{\sqrt{1-a x}}{\sqrt{1+a x}}\right )-\frac{1}{6} a \int \frac{1}{\sqrt{1-a^2 x^2}} \, dx\\ &=-\frac{1}{6} a x \sqrt{1-a^2 x^2}-\frac{7}{6} \sin ^{-1}(a x)+\sqrt{1-a^2 x^2} \tanh ^{-1}(a x)+\frac{1}{3} \left (1-a^2 x^2\right )^{3/2} \tanh ^{-1}(a x)-2 \tanh ^{-1}(a x) \tanh ^{-1}\left (\frac{\sqrt{1-a x}}{\sqrt{1+a x}}\right )+\text{Li}_2\left (-\frac{\sqrt{1-a x}}{\sqrt{1+a x}}\right )-\text{Li}_2\left (\frac{\sqrt{1-a x}}{\sqrt{1+a x}}\right )\\ \end{align*}

Mathematica [A]  time = 0.211454, size = 143, normalized size = 0.99 \[ \frac{1}{6} \left (6 \text{PolyLog}\left (2,-e^{-\tanh ^{-1}(a x)}\right )-6 \text{PolyLog}\left (2,e^{-\tanh ^{-1}(a x)}\right )-a x \sqrt{1-a^2 x^2}-2 a^2 x^2 \sqrt{1-a^2 x^2} \tanh ^{-1}(a x)+8 \sqrt{1-a^2 x^2} \tanh ^{-1}(a x)+6 \tanh ^{-1}(a x) \log \left (1-e^{-\tanh ^{-1}(a x)}\right )-6 \tanh ^{-1}(a x) \log \left (e^{-\tanh ^{-1}(a x)}+1\right )-14 \tan ^{-1}\left (\tanh \left (\frac{1}{2} \tanh ^{-1}(a x)\right )\right )\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((1 - a^2*x^2)^(3/2)*ArcTanh[a*x])/x,x]

[Out]

(-(a*x*Sqrt[1 - a^2*x^2]) - 14*ArcTan[Tanh[ArcTanh[a*x]/2]] + 8*Sqrt[1 - a^2*x^2]*ArcTanh[a*x] - 2*a^2*x^2*Sqr
t[1 - a^2*x^2]*ArcTanh[a*x] + 6*ArcTanh[a*x]*Log[1 - E^(-ArcTanh[a*x])] - 6*ArcTanh[a*x]*Log[1 + E^(-ArcTanh[a
*x])] + 6*PolyLog[2, -E^(-ArcTanh[a*x])] - 6*PolyLog[2, E^(-ArcTanh[a*x])])/6

________________________________________________________________________________________

Maple [A]  time = 0.2, size = 132, normalized size = 0.9 \begin{align*} -{\frac{2\,{a}^{2}{x}^{2}{\it Artanh} \left ( ax \right ) +ax-8\,{\it Artanh} \left ( ax \right ) }{6}\sqrt{- \left ( ax-1 \right ) \left ( ax+1 \right ) }}-{\frac{7}{3}\arctan \left ({(ax+1){\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}} \right ) }-{\it dilog} \left ({(ax+1){\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}} \right ) -{\it dilog} \left ( 1+{(ax+1){\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}} \right ) -{\it Artanh} \left ( ax \right ) \ln \left ( 1+{(ax+1){\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}} \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a^2*x^2+1)^(3/2)*arctanh(a*x)/x,x)

[Out]

-1/6*(-(a*x-1)*(a*x+1))^(1/2)*(2*a^2*x^2*arctanh(a*x)+a*x-8*arctanh(a*x))-7/3*arctan((a*x+1)/(-a^2*x^2+1)^(1/2
))-dilog((a*x+1)/(-a^2*x^2+1)^(1/2))-dilog(1+(a*x+1)/(-a^2*x^2+1)^(1/2))-arctanh(a*x)*ln(1+(a*x+1)/(-a^2*x^2+1
)^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-a^{2} x^{2} + 1\right )}^{\frac{3}{2}} \operatorname{artanh}\left (a x\right )}{x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)^(3/2)*arctanh(a*x)/x,x, algorithm="maxima")

[Out]

integrate((-a^2*x^2 + 1)^(3/2)*arctanh(a*x)/x, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (a^{2} x^{2} - 1\right )} \sqrt{-a^{2} x^{2} + 1} \operatorname{artanh}\left (a x\right )}{x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)^(3/2)*arctanh(a*x)/x,x, algorithm="fricas")

[Out]

integral(-(a^2*x^2 - 1)*sqrt(-a^2*x^2 + 1)*arctanh(a*x)/x, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac{3}{2}} \operatorname{atanh}{\left (a x \right )}}{x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a**2*x**2+1)**(3/2)*atanh(a*x)/x,x)

[Out]

Integral((-(a*x - 1)*(a*x + 1))**(3/2)*atanh(a*x)/x, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-a^{2} x^{2} + 1\right )}^{\frac{3}{2}} \operatorname{artanh}\left (a x\right )}{x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)^(3/2)*arctanh(a*x)/x,x, algorithm="giac")

[Out]

integrate((-a^2*x^2 + 1)^(3/2)*arctanh(a*x)/x, x)